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Abstract
A general simple theory for the interspecific allometric scaling is developed
in the d + 1-dimensional space (d biological lengths and a physiological time)
of metabolic states of organisms. It is assumed that natural selection shaped
the metabolic states in such a way that the mass and energy d + 1-densities are
size-invariant quantities (independent of body mass). The different metabolic
states (basal and maximum) are described by considering that the biological
lengths and the physiological time are related by different transport processes of
energy and mass. In the basal metabolism, transportation occurs by ballistic and
diffusion processes. In d = 3, the 3/4 law occurs if the ballistic movement is
the dominant process, while the 2/3 law appears when both transport processes
are equivalent. Accelerated movement during the biological time is related
to the maximum aerobic sustained metabolism, which is characterized by the
scaling exponent 2d/(2d + 1) (6/7 in d = 3). The results are in good agreement
with empirical data and a verifiable empirical prediction about the aorta blood
velocity in maximum metabolic rate conditions is made.

PACS numbers: 87.10.+e, 87.23.−n

Metabolic rate B and body mass M are connected by the relation B = aMb, where b is
the allometric exponent and a is a constant. For several decades it was accepted that the
basal metabolic rate (BMR) among almost all organisms [1–3] (interspecific scaling) was
characterized by b = 3/4 (Kleiber’s law [4]). A few years ago, theoretical explanations
of the ubiquity of the 3/4-law based on the resource distribution network common to all
organisms [5] and on network geometry optimization [6, 7] were proposed. Kleiber’s law
has however been questioned recently. On the observational side, it is not clear whether the
value of b is 3/4, 2/3 or even variable in both interspecific and intraspecific (same species)
scaling [8–10]. On the theoretical side, there are several debates about the validity of these
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models [8, 11] undermining the rational basis for the scaling law. A related open question is
why maximum aerobic sustained metabolic rate (MMR) of endothermic animals scales with
an exponent larger than that of BMR [9–14]. In this work we show how, on the basis of
a few quite general hypotheses, all the aspects of metabolic scaling mentioned above may
be accounted for. The central assumption of our approach is that, if one characterizes the
metabolic state of an organism as a point in a space comprised of d biological lengths and a
biological time τ , then the (d + 1)-dimensional mass and energy densities are size-invariant
under natural selection. Using this idea we may, given the dominant mass and energy transport
processes, obtain dynamical relations involving lengths and time. The latter are characterized
by invariant quantities (diffusion coefficient, velocity etc.). Each transport mechanism is
related to a different metabolic state, with its own values for allometric exponents, in agreement
with data.

The key questions in interspecific allometry are: (1) Is there a universal interspecific BMR
exponent b? (2) Is there a model that can describe both BMR and MMR scaling? (3) Which
quantities have their scaling determined by the BMR, and which by the MMR?

We present a simple and general theory that answers, at least partially, these questions
and explain some aspects of the allometric scaling of organisms. As all biological processes
depend on characteristic times, it is natural to include a characteristic time, as well as various
characteristic lengths, when specifying the metabolic state of an organism [15, 16]. We
therefore associate the metabolic state of an organism with a point in a d + 1-dimensional
space with d biological lengths L1, L2 . . . , Ld and a biological time τ . Here d is the number
of spatial dimensions; although we usually have d = 3, we will work in general dimension d.
Examples of biological lengths L and times τ are the total aorta length in mammals, the length
of capillaries, the mean distance from cell surface to mitochondria in unicellular organisms,
the duration of one heartbeat, the capillary blood transit time or the turnover time for glucose
[1, 2, 7, 16].

We now look for simple, general relations constraining the distribution of points in the
space of metabolic states. It is usual for an animal to make several transitions between states
Abasal and Amax, through a series of complex biochemical processes. We do not consider
these transitions. Rather we are interested in describing how natural selection has shaped
the state Abasal and other ones belonging to the space of metabolic states of all organisms
(or a group of them). An organism is characterized by the fundamental quantities of mass
and available energy for the metabolic processes. We therefore identify the mass M and
available energy E as the fundamental variables characterizing an organism. Since we have
a d + 1-dimensional space we shall use the mass density ρd+1(L1, . . . , Ld, τ ) (mass per unit
volume and unit time) and the energy density σd+1(L1, . . . , Ld, τ ) (available energy per unit
volume and unit time). We assume that during evolution, natural selection enforces the
constraints of size-invariant (independent of body mass) ρd+1 and σd+1 (our first and second
hypotheses, respectively). Our third hypothesis is that the scaling of the metabolic states is
determined by the dominant dynamical transport processes of nutrients (mass and energy),
which are characterized by size-invariant quantities (diffusion coefficient, average velocity,
etc.). Note that the first and second hypotheses furnish two relations valid for all metabolic
regimes. Different metabolic scalings will appear because there are different ways to transport
nutrients.

From the second hypothesis we obtain that E = σd+1τVd , where τVd is the d + 1-volume
and Vd = L1L2 . . . Ld . Since power is defined as P = dE/dt , energy can be written in terms
of B, the power averaged over the time scale τ , as E = Bτ . We identify B as the metabolic
rate. Therefore from the first and second hypotheses we obtain that

M = ρd+1τVd, and B = σd+1Vd. (1)
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Let us briefly present a qualitative argument about an optimal delivery that supports our
postulates. Consider two organisms with the same body mass M belonging to the same group.
The organism with the larger biological volume Vd has the larger nutrient distribution network
and more fuel and oxygen are arriving to the cells in a unit time. Therefore its cells must have
a fast metabolism in order to consume the fuel. Of course, a fast metabolism is related to a
small biological time. On the other hand, a small Vd implies in a larger biological time τ .
These arguments suggest that the product τVd is constant for these organisms.

An immediate consequence of our hypotheses is that the power per mass (specific
metabolic rate), namely

B

M
= σd+1

ρd+1

1

τ
,

is inversely proportional to the metabolic time. Animals with a small τ , such as small mammals,
require larger power by unit mass than ones with a large τ (large mammals) because their cells
have a large mitochondrial density [17].

Obviously, τ cannot be 0 neither ∞; there must be a minimal and a maximal metabolic
times τmin and τmax. For animals, a lower bound for τmin can be found from the observation
that the biological volume of an organism Vd cannot be larger than its spatial volume V ,
since the biological lengths Li characterize the organism’s anatomy on the scale of the body,
or some organ or cellular structure. For compact animal bodies we have that M = ρV ,
where ρ is the usual d-dimensional mass density, which is approximately constant. Using
ρV = M = ρd+1τVd in V > Vd , we obtain τ > τmin = ρ/ρd+1. Since B/M cannot be
zero it must exist an size-invariant (B/M)min related to the minimum power per mass to keep
the organisms just alive, the so-called tissue maintenance specific metabolic rate [10]. This
implies that τmax = σd+1/(ρd+1(B/M)min). Note if τ is size-invariant, such as τmax, we have
isometric scaling of the metabolic rate (b = 1).

The relation M ∝ τVd , derived from the first hypothesis, is a generalization of the result of
Banavar et al [6], namely Vnet ∝ Ld+1, where Vnet is the total volume of an efficient distributive
network. Using that the blood volume Vnet is proportional to mass, they obtained M ∝ Ld+1,
a basic relation to deduce the 3/4-law. The two relations are equal when τ ∝ L, a condition
valid for the BMR. Moreover, the result M ∝ Ld+1 is also crucial to obtain the BMR exponent
in the model of West, Brown and Enquist (WBE) [5]. This relation is also a generalization of
the equation F ∝ (Lp/u)B of Banavar et al [7], where Lp is the physical length of the system
and u is the characteristic length scale. If we rewrite this equation as M ∝ ρtVd , where ρ is
the tissue density and t is the physiological time related with the rate of energy use per unit
volume, it becomes similar to equation (1).

Although, from our third assumption, we need some dynamical size-invariant quantities,
like the blood flow speed velocity v0 in the aorta or in the capillaries, the length lc and the
radius rc of capillaries are not necessarily invariants.

Let us first study the case of transport via diffusion. We have only one metabolic length
scale (L1 ∝ L2 ∝ · · · ∝ Ld ∝ L), so the biological volume is given by Vd ∝ Ld . Since
diffusion over short distances is fast, it is possible that the metabolic rate of very small
organisms is governed by this process. It is well known that L = D0τ

1/2, where D0 is the
size-invariant diffusion coefficient. Since τ = (L/D0)

2, we obtain from equation (1) that
M ∝ Ld+2. This relation furnishes how L depends on M and we can use again equation (1) to
obtain that

L ∝ M
1

2+d , τ ∝ M
2

2+d , B ∝ M
d

2+d .

In d = 3, the metabolic exponent is b = 3/5.
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For larger organisms diffusion is inadequate. Transport by convection is then utilized on
large length scales. In mammals, for example, we find the cardiovascular system that transports
blood to the capillaries, where the cells are fed by diffusion. Since blood circulates in an
ballistic regime, we consider that the BMR is basically driven by ballistic transport, namely
L = v0τ , where the velocity v0 is size-invariant. Now we must specify how the different
metabolic steps are related. We call BMR-1 the scenario of a single metabolic relevant length
L1 ∝ L = v0τ and a single time τ , both related to the ballistic transport. The other lengths,
related to other metabolic steps, have evolved to meet it, namely L2 ∝ . . . ∝ Ld ∝ L. Using
that Vd ∝ Ld in equation (1), we write

L ∝ τ ∝ M
1

d+1 , B ∝ M
d

d+1 .

For d = 3 we find the 3/4-law, namely τ ∝ L ∝ M1/4 and B ∝ M3/4. These results are the
same as those of WBE [5] and Banavar et al [6, 7].

In the BMR-2 scenario, we have different relevant lengths and times related to the
metabolic processes. However, due to the concept of symmorphosis [18], which states that all
metabolic steps have co-evolved in order that no step is more limiting than another, we will
end up with a single time τ and d − 1 rescaled lengths. In a ‘cylindrical’ symmetry we have
L1 ∝ L = v0t1 (ballistic term) and d −1 lengths proportional to R = D0t

1/2
2 (diffusion). Both

v0 and D0 are size-invariant. From the symmorphosis principle (t1 = t2 = τ), it follows that
R = (

D0
/
v

1/2
0

)
L1/2. The biological volume is Vd ∝ Rd−1L. From equation (1) we obtain that

L ∝ τ ∝ M
2

3+d , R ∝ M
1

3+d , B ∝ M
1+d
3+d .

Then in d = 3 the BMR-2 scenario yields the 2/3 law, without mention of the area/volume
ratio. We obtained both 3/4 and 2/3 laws from the same transport processes: convection
and diffusion. If convection is the dominant limiting process we have the 3/4 law; if the two
processes are equivalent we obtain the 2/3 law.

The circulatory networks of endothermic animals are dynamical ones which are adjusted
according to the metabolic state. The transition from resting to maximum activity can be
described very briefly as follows: (a) the heart increases its rate and output; (b) the mean
arterial pressure and peripheral extramuscular resistance increase; (c) arterial blood volume
increases due to constriction of the veins; (d) extramuscular flow remains essentially constant,
somewhat reduced in some organs but increased in others; and (e) total flow and muscular
flow increase, with all muscular capillaries activated. The items (a), (c) and (e) suggest
that we have a ‘forced movement’ during the characteristic time τ . This means that the
typical constant velocity can be written as v = a0τ , where a0 is a size-invariant acceleration.
Consequently the MMR is driven by an inertial movement accelerated during time τ , implying
that L = vτ = a0τ

2.
If inertial transport is the only relevant process (MMR-1 scenario), it follows that

L1 ∝ L2 . . . ∝ Ld ∝ L = a0τ
2. Since Vd ∝ Ld and τ ∝ L1/2, we obtain from equation (1)

the metabolic relations:

L ∝ M
2

2d+1 , τ ∝ M
1

2d+1 , B ∝ M
2d

2d+1 .

For d = 3 we have that L ∝ M2/7, τ ∝ M1/7 and B ∝ M6/7. This results agree with the ones
obtained trough a generalization of WBE ideas to MMR scenario [14].

In the MMR-2 scenario, diffusion and inertial movement are equally relevant. We again
choose a ‘cylindrical’ symmetry so that have that L1 ∝ L = a0τ

2 while the remaining d − 1
lengths are of order D0τ

1/2. It follows from equation (1) that

L ∝ M
4

d+5 , τ ∝ M
2

d+5 ,

B ∝ M
d+3
d+5 , R ∝ M

1
d+5 .

When d = 3, we obtain that L ∝ M1/2, τ ∝ M1/4, R ∝ M1/8 and B ∝ M3/4.
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Table 1. Allometric exponent y describing the dependence of a variable Y on body mass
M (Y ∼ My). Under parenthesis is the error in the last significative of the observed quantities.

Exponent

Variable Predicted Observed Reference

MMR 0.86 (MMR-1) 0.83(7) [9]
0.88(2) [12]
0.87(3) [13]
0.85 [21]
0.87(5) [22]

Capillary density −0.14 (MMR-1) −0.14(7) [3, 19]

Heart rate at MMR −0.14 (MMR-1) −0.17(2) [23]
−0.16(2) [24]
−0.15 [25]

BMR 0.75 (BMR-1) 0.74(2) [9]
0.66 (BMR-2) 0.67 [8]

0.69(1) [26]

Heart rate at BMR −0.25 (BMR-1) −0.25(2) [1, 9]
−0.33 (BMR-2) −0.27 [3, 26]

Aorta radius 0.36 (MMR-1) 0.36 [3, 26]
0.38 (BMR-1)
0.33 (BMR-2)

Aorta length 0.29 (MMR-1) 0.32 [1, 3]
0.25 (BMR-1) 0.31 [26]
0.33 (BMR-2)

The transportation network can be characterized by ‘aorta’ and ‘capillaries’. Note that
the aorta La and capillary lc lengths are both proportional to L. Since the nutrient fluid is
conserved, the volume rate of flow is given by

Q̇ = πR2
ava = Ncπr2

c vc,

where Ra and va are the aorta radius and fluid velocity and Nc, rc and vc are capillary number,
radius and fluid velocity, respectively. It is natural to write that Q̇ ∝ B. In the basal regime,
va and vc are size-invariant. Then we obtain that Ra ∝ B1/2 and Ncr

2
c ∝ B. Making the

extra assumption that rc is invariant, it follows that the capillary density ρc = Nc/M is
ρc ∝ B/M ∝ 1/τ . For d = 3 we have the following results: (a) BMR-1 - Ra ∝ M3/8 and
ρc ∝ M−1/4; (b) BMR-2 - Ra ∝ M1/3 and ρc ∝ M−1/3. In the maximum regime, we have that
va = a0τ , implying that now va depends on the mass. Note that this suggests new empirical
studies. Then, we obtain that R2

a ∝ B/τ . Now vc is not necessarily invariant, as in the basal
case. Since ρcr

2
c vc ∝ 1/τ we obtain that ρc ∝ 1/τ if we make the extra assumptions that

both vc and rc are independent of body mass. The results are: (c) MMR-1 - Ra ∝ M5/14 and
ρc ∝ M−1/7; (d) MMR-2 - Ra ∝ M1/4 and ρc ∝ M−1/4.

Let us compare our predictions for d = 3 with experimental data (see table 1). The
values predicted in the MMR-2 context are far from the experimental ones. On the other hand,
the MMR-1 scenario describes very well the MMR data. The exponent b = 6/7 ≈ 0.86,
larger than the basal value, is in very good agreement with data. Muscular capillary density of
mammals is linked to MMR, instead of BMR, because only during exercise are all the muscular
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capillaries perfused. The capillary density scales as ρc = Nc/M ∝ M−1/7, in good agreement
with the average experimental value for various regions of muscle [3, 19]. Since τ ∝ M1/7,
frequencies must scale as F ∝ τ−1 ∝ Mf with f = −1/7 ≈ −0.14. This value, smaller than
the basal one, is also in good agreement with data for heart and respiration rates in strenuous
exercise. The results for the capillary invariant radius rc and lc ∝ M2/7, agree roughly with
the theoretical-empirical estimation of Dawson [20]. (lc ∝ M0.21 and rc ∝ M0.08).

Since the length of aorta cannot change from basal to maximum metabolic regimes, it
should scale as the prediction of MMR scaling. The predicted exponent 0.29 agrees well with
data. The aorta radius could in principle follow the two scalings because of the elasticity of
the aorta and the dynamical body adaptations of mammals in the transition BMR - MMR. The
experimental value 0.36 has however a better agreement with the MMR-1 value 5/14.

Consider now the predictions of BMR scaling. Recently the empirical values of the BMR
exponent of mammals were reanalyzed using diverse procedures [8, 9, 22] that furnished values
in the interval between b2 = 2/3 and b1 = 3/4, which are the predicted values of BMR-2 and
BMR-1, respectively. Heart and respiration rates are close to the BMR-1 value −1/4 and other
biological variables [5] have values close to multiples of 1/4. On the other hand, empirical
data near multiples of 1/3 are also reported [10]. Therefore, the two scenarios are possible.
This last possibility explains why b is greater in large versus small mammals data: diffusion
and ballistic transports can be equally important in small organisms (BMR-2) but not in large
ones, where ballistic transport is crucial (BMR-1). Finally, let us emphasize that we make
a verifiable empirical prediction: the aorta blood velocity (va), which is scaling-invariant in
BMR conditions, grows with mass in the exercise-induced MMR condition (va ∝ τ). The
related exponent, which is predict to have the value −0.14 in the MMR-1 scenario, was never
measured. Its empirical determination can be an experimental test of the importance of the
transportation processes for the allometric scaling of metabolism.
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